Search results for " 26B30"
showing 4 items of 4 documents
Strong BV-extension and W1,1-extension domains
2021
We show that a bounded domain in a Euclidean space is a $W^{1,1}$-extension domain if and only if it is a strong $BV$-extension domain. In the planar case, bounded and strong $BV$-extension domains are shown to be exactly those $BV$-extension domains for which the set $\partial\Omega \setminus \bigcup_{i} \overline{\Omega}_i$ is purely $1$-unrectifiable, where $\Omega_i$ are the open connected components of $\mathbb{R}^2\setminus\overline{\Omega}$.
Density of Lipschitz functions in energy
2020
In this paper, we show that the density in energy of Lipschitz functions in a Sobolev space $N^{1,p}(X)$ holds for all $p\in [1,\infty)$ whenever the space $X$ is complete and separable and the measure is Radon and finite on balls. Emphatically, $p=1$ is allowed. We also give a few corollaries and pose questions for future work. The proof is direct and does not involve the usual flow techniques from prior work. It also yields a new approximation technique, which has not appeared in prior work. Notable with all of this is that we do not use any form of Poincar\'e inequality or doubling assumption. The techniques are flexible and suggest a unification of a variety of existing literature on th…
Approximation by uniform domains in doubling quasiconvex metric spaces
2020
We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.
The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces
2017
In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the fine topology in the case p = 1. Dans un contexte d’espace m´etrique complet muni d’une mesure doublante et supportant une in´egalit´e de Poincar´e, nous d´emontrons la propri´et´e fine de Kellogg, le quasi-principe de Lindel¨of, et la propri´et´e de Choquet pour la topologie fine dans le cas p = 1. peerReviewed